Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Infect Dis Ther ; 12(7): 1891-1905, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37410343

RESUMO

INTRODUCTION: Antimicrobial resistance (AMR) is a major public health threat worldwide. Greece has the highest burden of infections due to antibiotic-resistant bacteria among European Union/European Economic Area (EU/EEA) countries. One of the most serious AMR threats in Greece is hospital-acquired infections (HAIs) with limited treatment options (LTO) caused by resistant gram-negative pathogens. Thus, this study sought to estimate the current AMR burden in Greece and the value of reducing AMR to gram-negative pathogens for the Greek healthcare system. METHODS: The current model was adapted from a previously published and validated model of AMR to investigate the overall and AMR-specific burden of treating the most common HAIs with LTO in Greece and scenarios to demonstrate the benefits associated with reducing AMR levels from a third-party payer perspective. Clinical and economic outcomes were estimated over a 10-year time horizon; life years (LYs) and quality-adjusted life years (QALYs) were calculated over a lifetime (based on the annual number of infections over 10 years) at a willingness-to-pay of €30,000 per QALY gained and a 3.5% discount rate. RESULTS: In Greece, the current AMR levels in HAIs with LTO caused by four gram-negative pathogens account for > 316,000 hospital bed days, €73 million in hospitalisation costs, and > 580,000 LYs and 450,000 QALYs lost over 10 years. The monetary burden is estimated at €13.9 billion. A reduction in current AMR levels by 10-50% results in clinical and economic benefit; 29,264-151,699 bed days may be saved, leading to decreased hospitalisation costs (€6.8 million-€35.3 million) and a gain in LYs (85,328-366,162) and QALYs (67,421-289,331), associated with a monetary benefit of between €2.0 billion and €8.7 billion. CONCLUSION: This study shows the substantial clinical and economic burden AMR represents to the Greek healthcare system and the value that can be achieved by effectively reducing AMR levels.

3.
Infect Dis Ther ; 12(6): 1695-1713, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37302137

RESUMO

INTRODUCTION: While incidence rates of vancomycin-resistant Enterococcus faecium have remained comparatively low in Japan, there have been increasing reports of more vancomycin-resistant Enterococcus (VRE) outbreaks, requiring costly measures to contain. Increased incidence of VRE in Japan may lead to more frequent and harder to contain outbreaks with current control measures, causing a significant burden to the healthcare system in Japan. This study aimed to demonstrate the clinical and economic burden of vancomycin-resistant E. faecium infections to the Japanese healthcare system and the impact of increasing rates of vancomycin resistance. METHODS: A de novo deterministic analytic model was developed to assess the health economic outcomes of treating hospital-acquired VRE infections; patients are treated according to a two-line treatment strategy, dependent on their resistance status. The model considers hospitalisation costs and the additional cost of infection control. Scenarios investigated the current burden of VRE infections and the additional burden of increased incidence of VRE. Outcomes were assessed over a 1-year and 10-year time horizon from a healthcare payer's perspective in a Japanese setting. Quality-adjusted life years (QALYs) were valued with a willingness-to-pay threshold of ¥5,000,000 ($38,023), and costs and benefits were discounted at a rate of 2%. RESULTS: Current VRE incidence levels in enterococcal infections in Japan equates to ¥130,209,933,636 ($996,204,669) in associated costs and a loss of 185,361 life years (LYs) and 165,934 QALYs over 10 years. A three-fold increase (1.83%) is associated with an additional ¥4,745,059,504 ($36,084,651) in total costs on top of the current cost burden as well as an additional loss of 683 LYs over a lifetime, corresponding to 616 QALYs lost. CONCLUSION: Despite low incidence rates, VRE infections already represent a substantial economic burden to the Japanese healthcare system. The substantial increase in costs associated with a higher incidence of VRE infections could result in a significant economic challenge for Japan.

4.
Infect Dis Ther ; 12(7): 1875-1889, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37341866

RESUMO

INTRODUCTION: Antimicrobial resistance (AMR) is a global public health challenge requiring a global response to which Australia has issued a National Antimicrobial Resistance Strategy. The necessity for continued-development of new effective antimicrobials is required to tackle this immediate health threat is clear, but current market conditions may undervalue antimicrobials. We aimed to estimate the health-economic benefits of reducing AMR levels for drug-resistant gram-negative pathogens in Australia, to inform health policy decision-making. METHODS: A published and validated-dynamic health economic model was adapted to the Australian setting. Over a 10-year time horizon, the model estimates the clinical and economic outcomes associated with reducing current AMR levels, by up to 95%, of three gram-negative pathogens in three hospital-acquired infections, from the perspective of healthcare payers. A willingness-to-pay threshold of AUD$15,000-$45,000 per quality-adjusted life-year (QALY) gained and a 5% discount rate (for costs and benefits) were applied. RESULTS: Over ten years, reducing AMR for gram-negative pathogens in Australia is associated with up to 10,251 life-years and 8924 QALYs gained, 9041 bed-days saved and 6644 defined-daily doses of antibiotics avoided. The resulting savings are estimated to be $10.5 million in hospitalisation costs, and the monetary benefit at up to $412.1 million. DISCUSSION: Our results demonstrate the clinical and economic value of reducing AMR impact in Australia. Of note, since our analysis only considered a limited number of pathogens in the hospital setting only and for a limited number of infection types, the benefits of counteracting AMR are likely to extend well beyond the ones demonstrated here. CONCLUSION: These estimates demonstrate the consequences of failure to combat AMR in the Australian context. The benefits in mortality and health system costs justify consideration of innovative reimbursement schemes to encourage the development and commercialisation of new effective antimicrobials.

5.
Infect Dis Ther ; 12(2): 527-543, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36544074

RESUMO

INTRODUCTION: Hospital-acquired infections (HAIs) and growing antimicrobial resistance (AMR) represent a significant healthcare burden globally. Especially in Greece, HAIs with limited treatment options (LTO) pose a serious threat due to increased morbidity and mortality. This study aimed to estimate the clinical and economic value of introducing a new antibacterial for HAIs with LTO in Greece. METHODS: A previously published and validated dynamic model of AMR was adapted to the Greek setting. The model estimated the clinical and economic outcomes of introducing a new antibacterial for the treatment of HAIs with LTO in Greece. The current treatment pathway was compared with introducing a new antibacterial to the treatment sequence. Outcomes were assessed from a third-party payer perspective, over a 10-year transmission period, with quality-adjusted life years (QALYs) and life years (LYs) gained considered over a lifetime horizon. RESULTS: Over the next 10 years, HAIs with LTO in Greece account for approximately 1.4 million hospital bed days, hospitalisation costs of more than €320 million and a loss of approximately 403,000 LYs (319,000 QALYs). Introduction of the new antibacterial as first-line treatment provided the largest clinical and economic benefit, with savings of up to 93,000 bed days, approximately €21 million in hospitalisation costs and an additional 286,000 LYs (226,000 QALYs) in comparison to the current treatment strategy. The introduction of a new antibacterial was linked to a monetary benefit of €6.8 billion at a willingness to pay threshold of €30,000 over 10 years. CONCLUSION: This study highlights the considerable clinical and economic benefit of introducing a new antibacterial for HAIs with LTO in Greece. This analysis shows the additional benefit when a new antibacterial is introduced to treatment sequences. These findings can be used to inform decision makers to implement policies to ensure timely access to new antibacterial treatments in Greece.


Antimicrobial resistance is a major issue for the Greek healthcare system. The overuse of antibacterial agents contributes to the growing resistance levels, making currently available treatment options less effective. As a result, there is an imperative need to address antimicrobial resistance in Greece. This study developed a mathematical model to investigate the clinical and economic benefits of introducing a new antibacterial to current treatment practice. The model uses regression equations to describe the relationships between inputs and outputs from a published and validated model, which describes the transmission and treatment of infections. The model is used to estimate the impact of a new treatment in Greece, considering differing treatment sequence scenarios. The largest health and financial benefits were seen when a new antibacterial was introduced at first line prior to currently used treatments. Over 10 years, savings of up to 93,000 hospital bed days and €21 million in hospitalisation costs could be achieved, as well as a gain of 286,000 patient life years and 226,000 patient quality-adjusted life years (QALYs), a measure of a patient's quality and length of life, over their remaining lifetime. The introduction of a new antibacterial into the current treatment pathway resulted in an overall monetary benefit of €6.8 billion over 10 years, when additional QALYs are valued at €30,000. This study demonstrates considerable health economic benefits of introducing a new antibacterial in Greece and can help inform decision makers when developing a national action plan to combat resistance and improve access to treatments.

6.
eNeuro ; 9(3)2022.
Artigo em Inglês | MEDLINE | ID: mdl-35998295

RESUMO

Although visual object recognition is well studied and relatively well understood, much less is known about how shapes are recognized by touch and how such haptic stimuli might be compared with visual shapes. One might expect that the processes of visual and haptic object recognition engage similar brain structures given the advantages of avoiding redundant brain circuitry and indeed there is some evidence that this is the case. A potentially fruitful approach to understanding the differences in how shapes might be neurally represented is to find an algorithmic method of comparing shapes, which agrees with human behavior and determines whether that method differs between different modality conditions. If not, it would provide further evidence for a shared representation of shape. We recruited human participants to perform a one-back same-different visual and haptic shape comparison task both within (i.e., comparing two visual shapes or two haptic shapes) and across (i.e., comparing visual with haptic shapes) modalities. We then used various shape metrics to predict performance based on the shape, orientation, and modality of the two stimuli that were being compared on each trial. We found that the metrics that best predict shape comparison behavior heavily depended on the modality of the two shapes, suggesting differences in which features are used for comparing shapes depending on modality and that object recognition is not necessarily performed in a single, modality-agnostic region.


Assuntos
Percepção do Tato , Tato , Encéfalo , Humanos , Visão Ocular , Percepção Visual
7.
J Neurosci ; 37(20): 5183-5194, 2017 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-28450539

RESUMO

The manner in which the brain integrates different sensory inputs to facilitate perception and behavior has been the subject of numerous speculations. By examining multisensory neurons in cat superior colliculus, the present study demonstrated that two operational principles are sufficient to understand how this remarkable result is achieved: (1) unisensory signals are integrated continuously and in real time as soon as they arrive at their common target neuron and (2) the resultant multisensory computation is modified in shape and timing by a delayed, calibrating inhibition. These principles were tested for descriptive sufficiency by embedding them in a neurocomputational model and using it to predict a neuron's moment-by-moment multisensory response given only knowledge of its responses to the individual modality-specific component cues. The predictions proved to be highly accurate, reliable, and unbiased and were, in most cases, not statistically distinguishable from the neuron's actual instantaneous multisensory response at any phase throughout its entire duration. The model was also able to explain why different multisensory products are often observed in different neurons at different time points, as well as the higher-order properties of multisensory integration, such as the dependency of multisensory products on the temporal alignment of crossmodal cues. These observations not only reveal this fundamental integrative operation, but also identify quantitatively the multisensory transform used by each neuron. As a result, they provide a means of comparing the integrative profiles among neurons and evaluating how they are affected by changes in intrinsic or extrinsic factors.SIGNIFICANCE STATEMENT Multisensory integration is the process by which the brain combines information from multiple sensory sources (e.g., vision and audition) to maximize an organism's ability to identify and respond to environmental stimuli. The actual transformative process by which the neural products of multisensory integration are achieved is poorly understood. By focusing on the millisecond-by-millisecond differences between a neuron's unisensory component responses and its integrated multisensory response, it was found that this multisensory transform can be described by two basic principles: unisensory information is integrated in real time and the multisensory response is shaped by calibrating inhibition. It is now possible to use these principles to predict a neuron's multisensory response accurately armed only with knowledge of its unisensory responses.


Assuntos
Percepção Auditiva/fisiologia , Modelos Neurológicos , Rede Nervosa/fisiopatologia , Células Receptoras Sensoriais/fisiologia , Colículos Superiores/fisiologia , Percepção Visual/fisiologia , Animais , Gatos , Simulação por Computador , Sistemas Computacionais , Sinais (Psicologia) , Masculino , Inibição Neural/fisiologia , Integração de Sistemas
8.
J Neurosci ; 35(13): 5213-20, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25834047

RESUMO

Understanding the principles by which the brain combines information from different senses provides us with insight into the computational strategies used to maximize their utility. Prior studies of the superior colliculus (SC) neuron as a model suggest that the relative timing with which sensory cues appear is an important factor in this context. Cross-modal cues that are near-simultaneous are likely to be derived from the same event, and the neural inputs they generate are integrated more strongly than those from cues that are temporally displaced from one another. However, the present results from studies of cat SC neurons show that this "temporal principle" of multisensory integration is more nuanced than previously thought and reveal that the integration of temporally displaced sensory responses is also highly dependent on the relative efficacies with which they drive their common target neuron. Larger multisensory responses were achieved when stronger responses were advanced in time relative to weaker responses. This new temporal principle of integration suggests an inhibitory mechanism that better accounts for the sensitivity of the multisensory product to differences in the timing of cross-modal cues than do earlier mechanistic hypotheses based on response onset alignment or response overlap.


Assuntos
Percepção Auditiva/fisiologia , Colículos Superiores/fisiologia , Percepção Visual/fisiologia , Estimulação Acústica , Potenciais de Ação/fisiologia , Animais , Gatos , Sinais (Psicologia) , Neurônios/fisiologia , Estimulação Luminosa , Colículos Superiores/citologia , Fatores de Tempo
9.
Small ; 9(11): 1939-46, 2013 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-23281210

RESUMO

The unique ability of plasmonic nanostructures to guide, enhance, and manipulate subwavelength light offers multiple novel applications in chemical and biological sensing, imaging, and photonic microcircuitry. Here the reproducible, giant light amplification in multiscale plasmonic structures is demonstrated. These structures combine strongly coupled components of different dimensions and topologies that resonate at the same optical frequency. A light amplifier is constructed using a silver mirror carrying light-enhancing surface plasmons, dielectric gratings forming distributed Bragg cavities on top of the mirror, and gold nanoparticle arrays self-assembled into the grating grooves. By tuning the resonances of the individual components to the same frequency, multiple enhancement of the light intensity in the nanometer gaps between the particles is achieved. Using a monolayer of benzenethiol molecules on this structure, an average SERS enhancement factor ∼108 is obtained, and the maximum enhancement in the interparticle hot-spots is ∼3 × 10¹°, in good agreement with FDTD calculations. The high enhancement factor, large density of well-ordered hot-spots, and good fidelity of the SERS signal make this design a promising platform for quantitative SERS sensing, optical detection, efficient solid state lighting, advanced photovoltaics, and other emerging photonic applications.

10.
J Chem Phys ; 136(7): 074102, 2012 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-22360231

RESUMO

A common feature in computations of chemical and physical properties is the investigation of phenomena at different levels of computational accuracy. Less accurate computations are used to provide a relatively quick understanding of the behavior of a system and allow a researcher to focus on regions of initial conditions and parameter space where interesting phenomena are likely to occur. These inexpensive calculations are often discarded when more accurate calculations are performed. This paper demonstrates how computations at different levels of accuracy can be simultaneously incorporated to study chemical and physical phenomena with less overall computational effort than the most expensive level of computation. A smaller set of computationally expensive calculations is needed because the set of expensive calculations is correlated with the larger set of less expensive calculations. We present two applications. First, we demonstrate how potential energy surfaces can be fit by simultaneously using results from two different levels of accuracy in electronic structure calculations. In the second application, we study the optical response of metallic nanostructures. The optical response is generated with calculations at two different grid resolutions, and we demonstrate how using these two levels of computation in a correlated fashion can more efficiently optimize the response.

11.
Nano Lett ; 11(10): 4058-66, 2011 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-21902194

RESUMO

We demonstrate the plasmon-selective and driven deposition of (bipyramidal) Au nanoparticles on transparent substrates (glass coverslips) utilizing total internal reflection (TIR) illumination. Near-IR laser light undergoing TIR at a glass-water interface causes colloidal Au bipyramids to irreversibly deposit onto the glass surface. We demonstrate that the deposition process has particle (i.e., shape) selectivity that is associated with resonant plasmon excitation. Specifically, the deposition is selective for the bipyramids over spheroidal particles that are also present in solution due to the former's surface plasmon resonance in the near-IR region. Our measurements, finite difference time domain simulations, and the results of an analytical model show that the optical (i.e., scattering and gradient) forces that act on the particles are large and cause the observed acceleration and directed motion of the bipyramids. These directional forces play a major role in the spatial pattern of particle deposition that is observed. In addition, the resonant photothermal heating of the Au bipyramids causes an irreversible loss in colloidal stability, thus allowing them to adhere to the surface. Structural (i.e., scanning electron microscopy) characterization of the deposited bipyramids reveals a slight reduction in aspect ratio relative to the ensemble, consistent with the proposed (heating) mechanism. To our knowledge this is the first demonstration of the plasmon-selective deposition of metal nanoparticles from a heterogeneous mixture.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...